Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279360

RESUMEN

The molecular mechanism involved in chickpea (Cicer arietinum L.) resistance to the necrotrophic fungal pathogen Ascochyta rabiei is not well documented. A. rabiei infection can cause severe damage in chickpea, resulting in significant economic losses. Understanding the resistance mechanism against ascochyta blight can help to define strategies to develop resistant cultivars. In this study, differentially expressed genes from two partially resistant cultivars (CDC Corinne and CDC Luna) and a susceptible cultivar (ICCV 96029) to ascochyta blight were identified in the early stages (24, 48 and 72 h) of A. rabiei infection using RNA-seq. Altogether, 3073 genes were differentially expressed in response to A. rabiei infection across different time points and cultivars. A larger number of differentially expressed genes (DEGs) were found in CDC Corinne and CDC Luna than in ICCV 96029. Various transcription factors including ERF, WRKY, bHLH and MYB were differentially expressed in response to A. rabiei infection. Genes involved in pathogen detection and immune signalings such as receptor-like kinases (RLKs), Leucine-Rich Repeat (LRR)-RLKs, and genes associated with the post-infection defence response were differentially expressed among the cultivars. GO functional enrichment and pathway analysis of the DEGs suggested that the biological processes such as metabolic process, response to stimulus and catalytic activity were overrepresented in both resistant and susceptible chickpea cultivars. The expression patterns of eight randomly selected genes revealed by RNA-seq were confirmed by quantitative PCR (qPCR) analysis. The results provide insights into the complex molecular mechanism of the chickpea defence in response to the A. rabiei infection.


Asunto(s)
Ascomicetos , Cicer , Cicer/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ascomicetos/fisiología
2.
Theor Appl Genet ; 132(6): 1909, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31028410

RESUMEN

Unfortunately there was an error in the name of the gene "Ca-AKL18" in the discussion section.

3.
Theor Appl Genet ; 132(6): 1861-1872, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30879097

RESUMEN

KEY MESSAGE: A high-density linkage map of chickpea using 3430 SNPs was constructed and used to identify QTLs and candidate genes for ascochyta blight resistance in chickpea. Chickpea cultivation in temperate conditions is highly vulnerable to ascochyta blight infection. Cultivation of resistant cultivars in combination with fungicide application within an informed disease management package is the most effective method to control ascochyta blight in chickpeas. Identifying new sources of resistance is critical for continued improvement in ascochyta blight resistance in chickpea. The objective of this study was to identify genetic loci and candidate genes controlling the resistance to ascochyta blight in recombinant inbred lines derived from crossing cultivars Amit and ICCV 96029. The RILs were genotyped using the genotyping-by-sequencing procedure and Illumina® GoldenGate array. The RILs were evaluated in the field over three site-years and in three independent greenhouse experiments. A genetic map with eight linkage groups was constructed using 3430 SNPs. Eight QTLs for resistance were identified on chromosomes 2, 3, 4, 5 and 6. The QTLs individually explained 7-40% of the phenotypic variations. The QTLs on chromosomes 2 and 6 were associated with the resistance at vegetative stage only. The QTLs on chromosomes 2 and 4 that were previously reported to be conserved across diverse genetic backgrounds and against different isolates of Ascochyta rabiei were confirmed in this study. Candidate genes were identified within the QTL regions. Their co-localization with the underlying QTLs was confirmed by genetic mapping. The candidate gene-based SNP markers would lead to more efficient marker-assisted selection for ascochyta blight resistance and would provide a framework for fine mapping and subsequent cloning of the genes associated with the resistance.


Asunto(s)
Ascomicetos/patogenicidad , Cicer/genética , Resistencia a la Enfermedad/genética , Genoma de Planta , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Cicer/metabolismo , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
4.
Plant Biotechnol J ; 17(1): 275-288, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890030

RESUMEN

Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR-01 using conventional biparental mapping approach were used to compare the efficiency of NGS-based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR-01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS-based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR-02 population. This study demonstrated the efficiency of NGS-based BSA as a rapid and cost-effective method to identify QTLs associated with ascochyta blight in chickpea.


Asunto(s)
Ascomicetos , Cicer/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Cicer/inmunología , Cicer/microbiología , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/inmunología
5.
Front Plant Sci ; 8: 838, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580004

RESUMEN

Ascochyta blight is one of the major diseases of chickpea worldwide. The genetic resistance to ascochyta blight in chickpea is complex and governed by multiple QTLs. However, the molecular mechanism of quantitative disease resistance to ascochyta blight and the genes underlying these QTLs are still unknown. Most often disease resistance is determined by resistance (R) genes. The most predominant R-genes contain nucleotide binding site and leucine rich repeat (NBS-LRR) domains. A total of 121 NBS-LRR genes were identified in the chickpea genome. Ninety-eight of these genes contained all essential conserved domains while 23 genes were truncated. The NBS-LRR genes were grouped into eight distinct classes based on their domain architecture. Phylogenetic analysis grouped these genes into two major clusters based on their structural variation, the first cluster with toll or interleukin-1 like receptor (TIR) domain and the second cluster either with or without a coiled-coil domain. The NBS-LRR genes are distributed unevenly across the eight chickpea chromosomes and nearly 50% of the genes are present in clusters. Thirty of the NBS-LRR genes were co-localized with nine of the previously reported ascochyta blight QTLs and were tested as potential candidate genes for ascochyta blight resistance. Expression pattern of these genes was studied in two resistant (CDC Corinne and CDC Luna) and one susceptible (ICCV 96029) genotypes at different time points after ascochyta blight infection using real-time quantitative PCR. Twenty-seven NBS-LRR genes showed differential expression in response to ascochyta blight infection in at least one genotype at one time point. Among these 27 genes, the majority of the NBS-LRR genes showed differential expression after inoculation in both resistant and susceptible genotypes which indicates the involvement of these genes in response to ascochyta blight infection. Five NBS-LRR genes showed genotype specific expression. Our study provides a new insight of NBS-LRR gene family in chickpea and the potential involvement of NBS-LRR genes in response to ascochyta blight infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...